
CS M152A
Project Report

TA: Tyler Albarran

Matthew Fiorella
Jack Zhi

Introduction
The project implements the classic tic-tac-toe game on the Spartan-6 FPGA. The game board
size is 3x3, and two human players are involved. The board of the game will be displayed on
a monitor via VGA. The player who has the turn can press 4 buttons, UP, DOWN, LEFT, or
RIGHT to move a blinking cursor on the board. When the cursor is moved to the target grid,
the player can press the ENTER button to record the move, and if the game is not ended yet,
the other player gets the turn. During the game, the 7-segment display will show the current
location of the cursor, and which player's move is now pending. We also need to constantly
check whether or not the game should be over. There can be three outcomes: tie, Player 0
wins, or Player 1 wins. When a game-over condition is met, the game ends automatically, and
no new moves are recorded. The final outcome will be shown on the 7-segment display. The
user can press the RESET button to start a new game with an empty board.

Grading Rubric:
● Empty game board displayed on VGA (10%)
● Cursor with blinking displayed on VGA (10%)
● Cursor location changes if the UP, DOWN, LEFT, RIGHT request is valid (15%)
● Cursor location does not change if the UP, DOWN, LEFT, RIGHT request is invalid

(5%)
● Valid moves recorded and displayed after ENTER button pressed (15%)
● Invalid moves ignored after ENTER button pressed (5%)
● Turn handed over to other player after valid move (10%)
● Current cursor location 0-8 displayed on 7-segment display (5%)
● Current turn P0/P1 displayed on 7-segment LCD (5%)
● Final game result E/P1E/P2E displayed on 7-segment LCD after game over (10%)
● Cursor no longer moves and new moves not recorded after game over (5%)
● New game starts after RESET switch is on then off (5%)

Implemetation
The top-level design of the tic tac toe game accomplishes two primary goals. The first is to
instantiate all of the sub modules that handle game functionality and VGA display. The
second is to compute the proper digit and anode to show on the seven segment display so that
the digit to segment converter outputs the correct signals. The block diagram for this module
is as follows:

The functionality of each submodule is outlined below:

clock_divider (clock_divider.v): This module is a simple clock divider that outputs three
separate clocks needed to manage three separate parts of the tic tac toe game. Utilizing
counters, the clock_divider outputs a 1Hz clock to manage the cursor blinking, a 250 Hz
clock to perform debouncing and manage the seven segment display, and a 25 MHz clock to
function as the pixel clock for the VGA.

move_cursor (move_cursor.v): This module implements the ability to move the cursor. It
accomplishes this goal by taking in six primary inputs: each of the four cursor movement
directions, a 250 Hz clock for debouncing, and the current state of the game to determine if
the cursor should even be moved. The first step this module takes is to debounce the
directional inputs, as these inputs come directly from the FPGA board buttons. This is
accomplished via a shift register running on the 250 Hz clock. The next step the module
completes is to update the row and the column of the cursor based on the state and the
directional input. If the state is not UNKNOWN, then the cursor is prevented from moving. It
should also be noted that this module itself maintains the cursor row and column so that it can
have some degree of memory. The final stage of the move_cursor module is to determine the
cursor location index based on the new cursor row and column. This is necessary because the
remaining modules utilize the cursor location index rather than cursor row and column.

current_move (current_move.v): This module stores the current move into the current
players’ moves array, and changes the current player to the next player (i.e If O just went, X
is now the current player). A player’s move is stored in a 9 bit array where the index of the
bits that are high corresponds to the tile index where that player has made moves. This
functionality is implemented with a series of conditional statements that utilizes a state input,
a cursor location input, and the current player to set a certain index of each players’ 9-bit
move array to high. The state input ensures that no moves are being recorded in a finished
game. The cursor location input allows the exact index of the current players’ moves array to
be set high. The current player is used to determine which players’ moves array to adjust and
is ultimately set to the other player after the turn.

check_result (check_result.v): This module checks each player’s moves to determine if a
win condition has been met or if the game has ended in a tie. The check_result block is
effectively the state machine of the Tic Tac Toe game, updating the state to A_WINS or
B_WINS if player A or player B won, TIE if the game ends in a tie, or UNKNOWN if the
game is still ongoing. The state diagram of check_result is as follows:

digit_to_seg (digit_to_seg.v): This module is a simple digit to segment converter that takes a
base 10 encoded digit and converts it to a representation that will be properly shown on the
FPGAs seven-segment display. The unique feature about this module is that it converts the
numbers 10 and 11 to P and E on the display respectively.

vga (vga.v): This module manages the game board display. This task is completed by
rendering each pixel based on the current x and y pixel position. Essentially, this module
executes a series of conditional statements that check the pixel position, game state, and
cursor state to determine what should be rendered on the screen. For example, if the cursor
position is in a game square, then that square will blink according to the blink clock. Another
example of this is if a move has been completed in a certain board square, the vga module
will draw the shape in that square according to which player made a move in that square. This
module utilizes pixel art to draw the X’s and O’s, creating a 2D array where the X’s and O’s
are marked with 1s and the background is marked with 0s. Additionally, upon a win, this
module will highlight the winning combination of squares by calculating the square
combination that induced the win.

simple_480p (simple_480p.v): This module controls the vga driving, effectively managing
the current x and y pixel position as well as the hsync and vsync signals. While the VGA
display is calibrated to the 640x480 pixel screen, there is additional logic that occurs once the
current pixel is past those boundaries. The VGA driver also iterates through a blanking period
that includes a Front Porch, Sync Period, and Back porch. This makes the dimensions being
managed actually 800x525 rather than 640x480. One main takeaway from this is that nothing
should be rendered while the pixel position is in the blanking period, but the hsync and vsync
signals should be set appropriately during the horizontal and vertical syncing periods so that
the monitor knows that the signals being sent to it are correct. Another notable aspect of this
is that it informs the user on how to set the pixel clock. Because the display is 800x525 pixels
and there is a 60Hz refresh rate on the monitor the pixel clock needs to operate at

to ensure every pixel is rendered before the refresh. On800 × 525 × 60 ≈ 25 𝑀𝐻𝑧
every positive edge of this clock, the VGA driving module will make sure to adjust the x and
y pixel position accordingly, incrementing the y position by one if at the end of the back
porch, resetting the x and y positions if the final pixel is reached, and simply incrementing the
x position by one otherwise.

When all of these modules are compiled together, the following report is generated by Xilinx:

Testbench

check_result.v
The testbench for check_result.v sends different combinations of a_moves (moves made by
Play 0 so far) and b_moves (moves by made Player 1 so far), and we need to check whether
game_result is set properly: UNKNOWN, A_WINS, B_WINS, or TIE. Note that
check_result is combinational and thus does not need a clock as an input.

We first set rst to high to clear the output. Then we test two different cases where the game
outcome is still undetermined.

At reset, game_result is set back to UNKNOWN (00). The two cases also output game_result
as UNKNOWN:

The following cases test different conditions when A can win. This includes A occupying an
entire row, an entire column, or an entire diagonal.

The game_result is properly set to A_WINS (01).

We then apply the same cases, while switching the values of a_moves and b_moves. These
correspond to the 3 cases where B can win: occupying an entire row, an entire column, or an
entire diagonal.

The game_result is properly set to B_WINS (10).

The last case tests the output when the game should be over but tie. Finally, we test the reset
again to clear the output.

The game_result is correctly set to TIE (11). At reset, it is set back to UNKNOWN (00).

record_move.v
The testbench for record_move.v sends different locations of the cursor on the board and
checks whether a move will be correctly validated and recorded on the board when the user
hits the enter button.

We begin by sending a reset and place a move by Play 0 at grid 4 (default location).

The a_moves is updated to 000010000, and the turn is handed over to Play 1.

Play 1 places a move at grid 3.

The b_moves is updated to 000001000, and the turn is handed over to Player 0.

Play 0 tries to place a move at grid 4 which is already occupied.

The request is ignored and a_moves remains at 000010000. Turn is not switched.

Play 0 places a move at grid 5.

The a_moves is updated to 000110000, and the turn is handed over to Player 1.

Play 1 tries to place a move at grid 5 which is already occupied.

The request is ignored and b_moves remains at 000001000. Turn is not switched.

We manipulate the game_result manually to game-over states, such as A_WINS (01) and
B_WINS (10). No more moves should be recorded after the game is over. Finally, a reset is
set to clear the board.

The values of a_moves and b_moves are not changed after enter is hit. Their values are reset
to 0 and the current player is reset to Player 0.

Note: move_cursor.v is not tested in simulation because it is driven by a debouncer. It is
tested directly on the FPGA where the 7-segment display shows the current location of the
cursor.

Conclusion & Challenges
1. We experienced some issues with the enter input signal. During the final routing

phase, ISE complained that it could be assigned to the physical button we used on the
FPGA because it would cause timing issues. Attempts by overriding the error failed,
as the enter button became completely unresponsive. After discussing the codes with
TA, we found that it was because we used statements like “posedge enter” in an
always statement to trigger some behaviors when enter was pressed. Theoretically,
only clocks were supposed to be coded in this way. We modified the always statement
so that it only depended on the master clock and the reset input, and constantly
checked whether enter was high at each positive edge of the master clock, to resolve
the issue.

2. We experienced some issues when trying to debounce the UP, DOWN, LEFT, RIGHT
buttons. Even with a debouncer and a slower sampling clock, a single press would
still be interpreted as multiple presses. We later modified the debouncing logic, so that
the cursor move could only be registered when the signal went from 0 to 1, and
another 1. Thus, even if the user pressed the button and held it for a long time, the
cursor would only move once, because the signal would stay at 1 which did not satisfy
the moving condition.

3. We experienced some issues in rendering the shapes on the VGA once a player
moved. While driving the VGA was relatively simple, drawing complicated shapes
was difficult because we were unsure of whether we should calculate the exact x and
y parameters that would render the shapes correctly or if there we should take a
simpler approach. We also considered storing the X and O shapes into ROM memory
before abandoning this idea due to its complexity. Ultimately, we found a simpler
approach that consisted of employing pixel art for the X and O shapes. We wanted our
shapes to fit in 50x50 pixel board squares, so to render the X and O shapes we created
2500 bit arrays, structured like the two dimensional board squares. This meant we
could have the array bits set to 1 in the positions where the X and O should be
rendered, and 0 where the background should be rendered. This solution provided an
easy fix to the problem of rendering complex shapes as we were able to find the pixel
art we needed from an internet resource cited in the verilog code. The only remaining
logic to calculate was how to index into these arrays based on the current pixel
position, and this wasn’t too difficult. Once this problem was solved, building out the
remaining conditional functionality of the vga module went smoothly.

