
Vectorized Image Search with CLIP and Faiss

Author(s)
Jihong Huang, Jiachen Ma, Liping Yin, Rongxiang Zhi, Lidian Zhuo

kolbehuang@ucla.edu, stephenmaaa@ucla.edu, lipyin@ucla.edu,
zhirongxiang@ucla.edu, zld3794955@ucla.edu

Abstract

Many studies have been carried out to integrate multi-modal data into a global1

feature space. In such a dataset, heterogeneous data like text, images, and videos,2

could be accessed and processed in a uniform manner. However, the integration3

of multi-modal data also means the loss of information, which makes it necessary4

to find methods that can extract relevant information from the global dataset both5

effectively and efficiently. That is, the search results from the dataset should have6

good quality and can be obtained at a low time cost. In this project, we would7

like to compare both search quality and efficiency of several search methods in a8

dataset uniformly storing embedded caption-image pairs. Specifically, we used9

CLIP to pre-process the dataset into high-dimensional vectors. Then, we applied10

different search methods, such as Nearest Neighbors and various Faiss methods11

with different parameters, on text-to-image and image-to-image search. Finally,12

we utilized precision@k and NDCG as the metrics for measurement. The text or13

image to search for might not only be selected from the dataset but also could be14

arbitrarily generated. During our evaluation, we discovered the trade-off between15

search quality and efficiency. As a result, we found that the clustering Faiss built16

on inner product could reach the optimal balance.17

1 Introduction18

1.1 Motivation19

In 2021, OpenAI introduced CLIP which could integrate multi-modal data into a global feature space,20

and those heterogeneous data such as texts and images were stored as embedding vectors in a uniform21

manner. This model can facilitate many downstream Machine Learning and Data Analysis tasks.22

However, the integration of multi-modal data also brings the loss of information, which requires23

methods that can extract relevant information from the dataset both efficiently and effectively to best24

utilize the model. Thus, search results should be retrieved at a good quality and low time cost. In25

this project, we would like to select several search methods, including the plain kNN and multiple26

variants of Faiss, and then compare them in terms of both search quality and efficiency.27

1.2 Dataset28

The dataset used for evaluating similarity search is MS COCO (Microsoft Common Objects in29

Context) 2017 Dataset. MS COCO 2017 dataset is a large-scale high-quality crowd-labeled dataset.30

For each image, there are 1 to 5 captions. The training set contains 118K images and the validation31

set contains 5,000 images.32

1.3 Vector Transformation (CLIP)33

To transform text-based and/or image-based data into vectors, we used the Contrastive Language-34

Image Pre-Training neural network (CLIP)5 as the pre-trained base model. The CLIP model was35

trained on various caption-image pairs (400 million in total and each class includes up to 20,00036

pairs). The specific pre-trained CLIP model loaded is Vision Transformer ViT-B/32. The CLIP model37

is composed of a text encoder and an image encoder (Figure 1). By embedding the original text and38

image, CLIP can compute the cosine similarity between the given pairs.39

Figure 1: Transforming texts and images into same vector space

1.4 Finetuning40

In order to generate more informative vector embedding for text and image, we fine-tuned the pre-41

trained ViT-B/32 on MS COCO 2017 dataset. For the COCO training set, the model is trained on42

118K caption-image pairs. We used the same training method used in CLIP: in every epoch, for43

each batch of caption-image pair inputs, CLIP learns to extract features of each modality by training44

the text encoder and image encoder jointly, then CLIP computes the pairwise cosine similarities45

by taking the dot product of text embedding and image embedding, and the final loss function l46

is the average of the cross-entropy loss from text encoder and the cross-entropy loss from image47

encoder. For hyperparameter choice, we used a smaller learning rate of 1e-5 for fine-tuning; we48

chose Adam optimizer using betas in (0.9, 0.98), epsilon in 1e-6 and weight decay in 0.2, which was49

the same hyperparameters used in CLIP. We used a batch size of 64 to fine-tuned the model for 1050

epochs where each took around 40 mins. The COCO 2017 Validation Set was used to evaluate the51

performance.52

2 Search Methods53

After mapping texts and images into the same vector space, we started to build our search functions.54

The question is how to store these vectors (the “data structure”) and how to find the best-matched55

results given a query (the “search method”). The easiest and most apparent way is using the old-school56

k-Nearest-Neighbor (kNN) where we simply store all the vectors. Upon receiving an input query, we57

simply find its nearest neighbors from the storage and return them as the results. However, while it58

guarantees the best-matched results based on distance, we may have to compromise the efficiency and59

cost, such as query time and RAM usage. We may even have to sacrifice some accuracy in exchange60

for some efficiency boost, especially when we have a large amount of data to search on. Thus, there61

are various ways to achieve or emulate the kNN search. In this project, we mainly focused on Faiss.62

Facebook AI Similarity Search (Faiss)3 is a library designed for efficient similarity search on large63

amounts of vectors. It contains algorithms that search in sets of vectors of any size, up to ones that64

possibly do not fit in RAM. Given a set of vectors xi in dimension d, Faiss builds a data structure65

called “index” in RAM. The storage operation of vector xi is achieved by calling the add() method on66

the index. After the final structure is completed, given a query vector x in dimension d, it efficiently67

performs the operation:68

2

i = argmin
j

||x− xj ||

where ||.|| could be either Euclidean (L2) distance or dot-product distance.69

In other words, solving the argmin problem is equivalent to performing the search(x) operation on70

the index. Of course, Faiss is a very flexible library as it provides many parameters for us to tune on.71

For instance, there are many ways to construct the index, measure the similarity and so on, where72

each combination comes with different preferences over speed, accuracy, and RAM usage. For this73

project, we are interested in investigating three different variants of Faiss: the “vanilla” method, the74

“clustering” method and AutoFaiss.75

2.1 Faiss (Vanilla)76

This refers to the “flat” indexes in Faiss 2. Flat indexes simply encode the N vectors into codes of77

a fixed size d and store them in an array of size N × d. At search time, all the stored vectors are78

decoded sequentially from the array and compared to the query vector. Thus, it has a theoretical79

search runtime of O(N), though some small tricks (such as compression) can still be played to80

slightly boost the speed. It is the closest emulation of kNN since it covers the entire search space and81

guarantees to return the most similar results.82

2.2 Faiss (Clustering)83

This refers to the “IndexIVF” indexes in Faiss. We use a partition-based method based on multi-84

probing. The feature space is first partitioned into possibly uneven C “cells”. All vectors are assigned85

to one of these cells by a quantization function. A typical function is k-means where each data point86

is assigned to the closest centroid. At query time, a set of nprobe cells which are assumed to be top87

relevant to the query input is selected (nprobe is an adjustable parameter), and the query is compared88

to each of the vectors inside these selected cells. Thus, only approximately a nprobe/C fraction of89

the original search space is compared to the query, which reduced the query time. However, we are90

no longer guaranteed to find the best result because a failure appears when the cell of the nearest91

neighbor(s) of a given query is not selected.92

2.3 AutoFaiss93

One interesting library we found is called AutoFaiss1, which provides a wrapper for Faiss, but saves94

hassle by automatically creating the “best” Faiss indexes with the “most optimal” parameters. Upon95

calling, it enumerates over multiple Faiss indexes on the same set of vectors, and returns the best96

indexing parameters to achieve the highest recalls given memory and query speed constraints. As it97

sounds too good to be true, we remain skeptical about their claims and decide to include it in our98

evaluation.99

2.4 sklearn.neighbors.NearestNeighbors100

This is a kNN implementation provided by the sklearn library. The principle behind k nearest101

neighbor4 methods is to find the top k training samples closest in the distance to the new point102

and predict the label from these k samples. The distance we use for metric measurement is cosine103

distance.104

3 Evaluation105

3.1 Measurements106

To measure the search results from different search methods on different tasks, we used precision@k107

and Normalized Discounted Cumulative Gain (NDCG) as the criteria. Depending on the existence108

of ground truth corresponding to the inputs within the domain of our tasks, the measurements are109

divided into two types – internal measurements and external measurements.110

3

3.1.1 Internal Measurements111

Suppose that a given input, which can be either a caption or an image, belongs to a caption-image112

pair in the dataset. We call such an input "internal", meaning that the ground truth of this inquiry113

exists in the dataset. If the input is a caption, then the ground truth of the task searching for an image114

based on the input caption will be its corresponding image; if the input is an image, then the ground115

truth of the task searching for an image based on the input image will be the input itself. In this case,116

we use precision@k as the internal measurement.117

Let’s denote the input X and the corresponding ground truth Y . Given the input X , any search118

method will return its top k results {X1, . . . , Xk}. If ∃i ∈ {1, . . . , k} s.t. Xi = Y , we assume that119

this search method successfully finds the ground truth of the input. Otherwise, the search method120

fails on the input X . Suppose we evaluate N examples, then the internal precision@k is the fraction121

of successful results returned by a search method with top k,122

prec@k =
1

N

N∑
i=1

1

[
∃j ∈ {1, . . . , k} s.t. X

(i)
j = Y (i)

]
where X

(i)
j is the j-th search result given input X(i) and Y (i) is the ground truth of input X(i).123

We did not use Normalized Discounted Cumulative Gain (NDCG) as a measurement for an internal124

input. Because there exists exactly one ground truth in the dataset, the relevance is 1 if and only if125

the result is the same as the ground truth. This means that among the top k search results there is at126

most one that is relevant, which is not very informative. In other words, as the full true relevance is127

not available, the Ideal Discounted Cumulative Gain (IDCG) does not exist, which makes NDCG128

inappropriate here.129

3.1.2 External Measurements130

Suppose that a given input, which can be either a caption or an image, does not exist in any caption-131

image pair in the dataset. We call such an input "external". Since a well-defined ground truth in132

the dataset is not available, we define the ground truth to be the closest result found by the plain133

k-nearest-neighbors (kNN) using the metrics of cosine similarity. If the input is a caption, the ground134

truth will be the image of the highest cosine similarity with the input caption in terms of embedding135

vectors given by the plain kNN; if the input is an image, the ground truth will be the image that has136

the highest cosine similarity to the input image, given by the plain kNN. In this case, we use both137

precision@k and NDCG as external measurements.138

Let’s denote the input X and the corresponding ground truth Y . Given the input X , any search139

method will return its top k results {X1, . . . , Xk}. If ∃i ∈ {1, . . . , k} s.t. Xi = Y , we assume that140

this search method successfully finds the ground truth of the input. Otherwise, the search method141

fails on the input X . Suppose we evaluate N examples, the external precision@k is the fraction of142

successful results returned by a search method with top k,143

prec@k =
1

N

N∑
i=1

1

[
∃j ∈ {1, . . . , k} s.t. X

(i)
j = Y (i)

]

where X
(i)
j is the j-th search result given input X(i) and Y (i) is the ground truth of input X(i).144

Assume the same setup of input X and ground truth Y , and the search method returns its top k results145

{X1, · · · , Xk}. Given the same X , the plain kNN also returns its top k results {Y1, . . . Yk}, where146

Y1 is exactly the ground truth Y . Consider any search result Xi, we represent its relevance to Y using147

the cosine similarity between Xi and Y in terms of their embedding vectors:148

rel(Xi) = CosineSimilarity
(
v(Xi), v(Y)

)
=

⟨v(Xi), v(Y)⟩
||v(Xi)|| · ||v(Y)||

where v(Xi) represents the embedding of Xi and v(Y) represents the embedding of Y .149

4

Then, we can compute the Discounted Cumulative Gain @k (DCGk) of the search results150

{X1, · · · , Xk} with respect to the ground truth Y :151

DCGk =

k∑
i=1

2rel(Xi) − 1

log2 (i+ 1)

Since we define plain kNN as the ground-truth method, we take the top k results from kNN to152

compute the true relevance and Ideal Discounted Cumulative Gain @k (IDCGk) of the true results153

{Y1, · · · , Yk} with respect to the ground truth Y :154

rel(Yi) = CosineSimilarity
(
v(Yi), v(Y)

)
IDCGk =

k∑
i=1

2rel(Yi) − 1

log2 (i+ 1)

Finally, the Normalized Discounted Cumulative Gain @k (NDCGk) is computed:155

NDCGk =
DCGk

IDCGk

The NDCG score with range [0,1] can measure the quality of the top k results of each search method156

compared with the plain kNN. A higher NDCG score on an external input means that a search method157

is closer to the quality of the plain kNN, and vice versa. Thus, theoretically we are measuring the158

relative quality. Furthermore, we observed that though the plain kNN had a satisfying search quality159

in our domain of task, its efficiency was much lower than any other search methods. This leads to the160

discussion of the trade-off between search quality and efficiency below.161

3.2 Results162

3.2.1 Internal Task: Captions to Images163

Obviously, the search method with the best quality was kNN, as we could see in Figure 2(a) that the164

sklearn kNN had the best precision@k for all k = 1, 3, 5, 7. The best methods following the kNN165

were Faiss with clusters built on inner product, Faiss without clustering built on inner product, and166

AutoFaiss. These three methods still have a competitive quality because their precision@k’s were at167

most 10% lower than those of kNN.168

However, Figure 2(b) illustrated that it took the sklearn kNN over 30 ms to execute a single query.169

AutoFaiss took around 10 ms, and all the other Faiss methods took around 3 ms. Even though the170

Faiss methods took more time to initialize the indices (Table 1), it might be still worthwhile as the171

time cost of performing a single query by Faiss with clustering is much lower than all the other172

methods.173

Therefore, there exists a trade-off between search quality measured by precision@k and search174

efficiency measured by the runtime on a single query. The sklearn kNN gave the best precision@k175

but also the highest time cost. Thus, the search method reaching a balanced point between quality176

and efficiency should be Faiss with clustering built on inner product.177

Table 1: Runtime of a single internal query (caption)

Search Method Initialization (ms) Runtime of internal caption (ms)

Plain kNN 10.925 30.993
Faiss, Vanilla, L2 Distance 2.237 3.667
Faiss, Vanilla, Inner Product 2.067 3.594
Faiss, Clustering, L2 Distance 133.556 2.504
Faiss, Clustering, Inner Product 128.749 2.463
AutoFaiss 16886.296 10.145

5

3.2.2 Internal Task: Images to Images178

The search quality of different search methods was almost equally good since all of the precision@k’s179

were close or equal to 1 (Figure 3(a)).180

The runtime of a single query maintained the same trend as in the previous task (Figure 3(b)).The181

sklearn kNN took the longest time, followed by AutoFaiss and all the other Faiss methods. Faiss with182

clustering built on Euclidean distance took the least single-query runtime. Therefore, since the search183

quality measured by precision@k were saturated in this task, we found that Faiss with clustering built184

on Euclidean distance should be the method that reached the well-balanced point between quality185

and efficiency.186

Table 2: Runtime of a single internal query (image)

Search Method Initialization (ms) Runtime of internal image (ms)

Plain kNN 10.925 33.912
Faiss, Vanilla, L2 Distance 2.237 3.592
Faiss, Vanilla, Inner Product 2.067 3.592
Faiss, Clustering, L2 Distance 133.556 0.172
Faiss, Clustering, Inner Product 128.749 2.515
AutoFaiss 16886.296 10.337

3.2.3 External Task: Captions to Images187

Recall that we used the closest image and top k results returned by the plain kNN as the ground truth188

and the true relevance respectively. Figure 4(a) indicated that none of the Faiss methods could find189

the ground truth in the first search, but all of them succeeded within the top 3 results (except for Faiss190

with clustering built on Euclidean distance which failed in all cases). Such a failure was possible191

because the usage of clustering implied that we would overlook some of the clusters which might192

contain better results, and using Euclidean distance as the metric made it less able to capture the193

results with smaller cosine similarity.194

Figure 4(b) showed that the NDCG score of each Faiss method was around 90% considering top 3 or195

more (except for Faiss with clustering built on Euclidean distance). Based on the definition of NDCG196

scores, they showed a search quality that was 90% of the plain kNN considering the top 3 or more197

results. If we consider the fact that the runtime of a single query using plain kNN (Table 13) was198

much longer, such a 10% cost of quality may be worthwhile for the great reduction in runtime.199

The runtime of a single-query on an external caption were given in Figure 4(c). AutoFaiss took the200

longest time, followed by Faiss without and with clustering. Faiss with clustering built on Euclidean201

distance took the least runtime.202

Overall, Faiss with clustering built on inner product had the best precision@k and NDCGk, and203

second-lowest runtime, making it the optimal method for this task.204

Table 3: Runtime of a single external query (text)

Search Method Initialization (ms) Runtime of internal image (ms)

Faiss, Vanilla, L2 Distance 2.237 3.565
Faiss, Vanilla, Inner Product 2.067 3.580
Faiss, Clustering, L2 Distance 133.556 0.135
Faiss, Clustering, Inner Product 128.749 2.338
AutoFaiss 16886.296 9.942

3.2.4 External Task: Images to Images205

We could see in Figure 5(a) that all the Faiss methods gave similar precision@k, though Faiss with206

clustering built on Euclidean distance had the lowest.207

6

In terms of NDCG scores of the Faiss methods, Figure 5(b) indicated that all the Faiss methods could208

reach an NDCG over 0.95 for top k = 5, 7, which meant that they could achieve over 95% quality209

of the plain kNN considering the top 5 or 7 results. If we consider the fact that the runtime of a210

single-query using the plain kNN (Table 24) was much longer, such a 5% cost of quality may be211

worthwhile for the great reduction in runtime.212

The runtime of a single-query on an external image were given in Figure 5(c). AutoFaiss took the213

longest single-query time, followed by Faiss without and with clustering. Faiss with clustering built214

on Euclidean distance took the least runtime.215

Overall, Faiss with clustering built on inner product had the best precision@k, NDCGk, and second-216

lowest runtime, making it the optimal method for this task.217

Table 4: Runtime of a single external query (text)

Search Method Initialization (ms) Runtime of internal image (ms)

Faiss, Vanilla, L2 Distance 2.237 3.592
Faiss, Vanilla, Inner Product 2.067 3.593
Faiss, Clustering, L2 Distance 133.556 0.171
Faiss, Clustering, Inner Product 128.749 2.522
AutoFaiss 16886.296 10.335

3.3 Complementary Analysis218

3.3.1 Internal Task (Captions to Images)219

It could be seen that the search results from "internal" captions were not satisfying since the220

precision@k’s of all the search methods were below 0.7. One possible reason behind could be221

that the embedding model CLIP could not well encode a caption/image pair into embedding vectors222

that are sufficiently close in terms of cosine similarity. To estimate the baseline truth, we ran several223

additional experiments and found that the average cosine similarity between the embedding vectors224

of caption-image pairs was only 0.3059, and the maximum cosine similarity was only 0.4023. Thus,225

the distance between the embedding vectors of a caption-image pair is not inherently small. This fact226

makes it extremely difficult to find the ground truth as the relationship between the true caption-image227

pair is not strong enough.228

The same problem did not happen in the case of searching on "external" captions because we used the229

plain kNN instead of simulating the "ground truth", which skipped the issue of low cosine similarity230

between any true pair of caption and image.231

3.3.2 Faiss with Clusterting Built on Inner Product232

Faiss with clustering built on inner product was observed to be the optimal method in all the tasks,233

possibly except for the one searching on internal images where precision@k was saturated. It used234

inner product, which was basically unnormalized cosine similarity, as its metric. Thus, it could well235

catch the results with desired properties. Besides, the application of clusters (a.k.a. partitions) enabled236

Faiss to only search through those clusters which it thought to be highly relevant to the query, saving237

runtime to give fairly good results. Therefore, this Faiss method should be satisfying in both quality238

and efficiency.239

3.3.3 AutoFaiss240

We mentioned that AutoFaiss was a Faiss method whose parameters were automatically optimized,241

which seemed that it should produce great performance. However, our results above indicated that its242

performance was not that outstanding as expected. It took an extremely long time to initialize, and its243

single-query runtime was still longer than the other "simpler" Faiss methods. One explanation for244

this counter-intuitive phenomenon was that our test dataset was too small for these Faiss methods, so245

the advantage of parameter optimization of AutoFaiss could not be well utilized. Besides, it took a246

long time to optimize its parameters, which might not be worthwhile for our tasks and small dataset,247

but very useful for those larger datasets. However, it was able to produce reasonable results without248

7

the hassle for us to manually select the appropriate parameters, unlike other "simpler" methods where249

we needed to tune the number of clusters/probes, metric types and so on.250

3.4 Discussion251

3.4.1 Limitations252

Despite our efforts, there were still some limitations in our project. First, due to the limit of available253

resources, we failed to build and test on a vectorized dataset of caption-image pairs whose size is254

as large as tens of thousands or hundreds of thousands which those advanced Faiss methods were255

designed for. Therefore, we could not observe a more precise and apparent difference between these256

methods. Second, the embedding model CLIP did not well encode a pair of caption and image into a257

pair of similar embedding vectors, which made the task of searching on internal captions essentially258

challenging. Such a flaw blocked the full exploration of the search procedure from captions to images.259

Third, we used cosine similarity throughout the project as the criterion evaluating the similarity260

between two embedded images. However, in practice two different images may both well match the261

same caption/image though their cosine similarity is low due to various reasons. It would be better if262

a criterion that could measure the semantic meaning of an input was available (for example, it could263

be part of a Generative Adversarial Network).264

3.4.2 Further Studies265

As further research in the field of vectorizing multi-modal data, more similarity criteria should be266

investigated to better capture the semantic meaning of any given input. Also, more search methods,267

including more advanced variants of Faiss methods, are to explore to guarantee satisfying search268

quality while maintaining the necessary (or even real-time) efficiency. With further studies on these269

components, our project could be transformed to serve as a real-time caption generator given an270

image, a piece of audio or even a video.271

4 Conclusion272

We have investigated and evaluated the quality and efficiency of several search methods, based273

on a set of caption-image pairs embedded by CLIP: plain kNN, vanilla Faiss built on Euclidean274

distance, vanilla Faiss built on inner product, clustering Faiss built on Euclidean distance, clustering275

Faiss built on inner product, and AutoFaiss. During the experiments, we found that there exists a276

trade-off between search quality (represented by the goodness of search results) and search efficiency277

(measured by the runtime of a single query). The plain kNN constantly gave the best search results278

but also took the longest time to execute a single query, while the clustering Faiss built on Euclidean279

distance consumed the least time but gave relatively unsatisfying search results. Thus, we conclude280

that, based on our experiment settings, the clustering Faiss built on inner product could reach a well281

balance between search quality and efficiency.282

References283

[1] Criteo. (2022, September 7). Criteo/autofaiss. GitHub. Retrieved from https://github.com/criteo/284

autofaiss285

[2] Douze, M. (2022, April 27). Faiss indexes · facebookresearch/Faiss Wiki. GitHub. Retrieved December 12,286

2022, from https://github.com/facebookresearch/faiss/wiki/Faiss-indexes287

[3] Douze, M. (2022, March 11). Home · facebookresearch/Faiss Wiki. GitHub. Retrieved from https:288

//github.com/facebookresearch/faiss/wiki289

[4] nearest neighbors. scikit. (n.d.). Retrieved from https://scikit-learn.org/0.15/modules/290

neighbors.html#neighbors291

[5] OpenAI. (2021, January 5). Clip: Connecting text and images. OpenAI. Retrieved from https://openai.292

com/blog/clip/293

8

https://github.com/criteo/autofaiss
https://github.com/criteo/autofaiss
https://github.com/criteo/autofaiss
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://github.com/facebookresearch/faiss/wiki
https://scikit-learn.org/0.15/modules/neighbors.html#neighbors
https://scikit-learn.org/0.15/modules/neighbors.html#neighbors
https://scikit-learn.org/0.15/modules/neighbors.html#neighbors
https://openai.com/blog/clip/
https://openai.com/blog/clip/
https://openai.com/blog/clip/

A Appendix294

(a) precision@k of different methods

(b) single-query runtime of different methods

Figure 2: Text2Image results by internal measurements on different search methods

9

(a) precision@k of different methods

(b) single-query runtime of different methods

Figure 3: Image2Image results by internal measurements on different search methods

10

(a) precision@k of different methods

(b) NDCG of different methods

(c) single-query runtime of different methods

Figure 4: Text2Image results by external measurements on different search methods

11

(a) precision@k of different methods

(b) NDCG of different methods

(c) single-query runtime of different methods

Figure 5: Image2Image results by external measurements on different search methods

12

	Introduction
	Motivation
	Dataset
	Vector Transformation (CLIP)
	Finetuning

	Search Methods
	Faiss (Vanilla)
	Faiss (Clustering)
	AutoFaiss
	sklearn.neighbors.NearestNeighbors

	Evaluation
	Measurements
	Internal Measurements
	External Measurements

	Results
	Internal Task: Captions to Images
	Internal Task: Images to Images
	External Task: Captions to Images
	External Task: Images to Images

	Complementary Analysis
	Internal Task (Captions to Images)
	Faiss with Clusterting Built on Inner Product
	AutoFaiss

	Discussion
	Limitations
	Further Studies

	Conclusion
	Appendix

